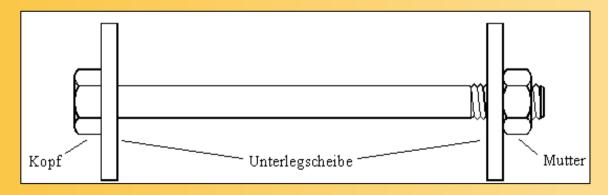

DIN 1052 Stabdübel, Passbolzen Bolzen, Gewindestangen BUNDESBILDUNGSZENTRUM DES ZIMMEREN UND AUGRAUGEWERBES BìBB BAFA 🐺 🔘 gefördert von:

Stabdübel- und Passbolzen (DIN 1052, 12.3)

Stabdübel:

- Nicht profilierte zylindrische Stäbe
- An den Enden leicht angefast
- Passsitz garantiert gute Klemmwirkung
- Vorzugsgrößen sind [mm]: 6, 8, 10, 12, 16, 20, 24
- Die Längen sind in 5 mm gestuft.
- Mindestdurchmesser 6 mm, Maximaler Durchmesser 30mm

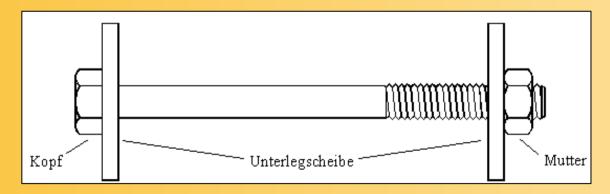


Stabdübel- und Passbolzen (DIN 1052, 12.3)

Passbolzen:

- Wie Stabdübel, aber mit Kopf und Mutter einschl. Unterlegscheiben (alternativ beidseitig Mutter)
- Sicherung aussenliegender Stahlteile oder Verbesserung der Klemmwirkung bei Holz-Holz-Verbindungen
- Tragwirkung wie Stabdübel

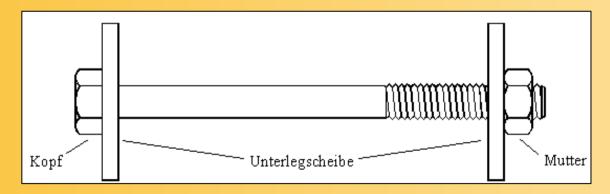
Stabdübel- und (Pass)bolzen



Bolzen und Gewindestangen (DIN 1052, 12.4)

Bolzen:

- Mit Kopf und Mutter einschl. Unterlegscheiben
- Werden mit geringem Spiel eingebaut (∅ + 1 mm)
- Unterlegscheibe muss eine Seitenlänge bzw. einen Durchmesser von mind. 3d und eine Dicke von mind. 0,3d aufweisen.



Bolzen und Gewindestangen (DIN 1052, 12.4)

Bolzen:

- Durch das Spiel im Bolzenloch sowie die fehlende Klemmwirkung treten größere Verschiebungen auf
- Tragende Bolzen dürfen nicht in Dauerbauten verwendet werden (Steifigkeit und Formbeständigkeit); i.d.R. nur für untergeordnete sowie fliegende Bauten, Gerüste
- Tragende Bolzen müssen nach dem Schwinden des Holzes nachgezogen werden

Bolzen und Gewindestangen (DIN 1052, 12.4)

Gewindestangen:

- Es gelten die Bestimmungen für Bolzen sinngemäß
- Für die Berechnung des charakteristischen Wertes des Fließmomentes ist bei Gewindestangen für d der Mittelwert aus Kern- und Gewindeaußendurchmesser einzusetzen

Nenndurchmesser [mm]	6	8	10	12	16	20	24	30
Wirks. Durchmesser [mm]	5,39	7,23	9,08	10,9	14,8	18,5	22,2	27,9

Beanspruchung rechtwinklig zur Achse – vereinfacht

Charakteristischer Wert der Tragfähigkeit:

$$R_{k} = \sqrt{\frac{2 \cdot \beta}{1 + \beta}} \cdot \sqrt{2 \cdot M_{y,k} \cdot f_{h,k} \cdot d}$$

= Char. Wert des Fließmomentes Stahl $M_{y,k}$

 $= 0.3 \times f_{u.k} \times d^{2.6}$

f_{u.k} = Char. Wert der Zugfestigkeit Stahl

= Char. Wert der Lochleibungsfestigkeit

 $= 50 \times d^{-0.6} \times t^{0.2}$

(OSB)

Beanspruchung rechtwinklig zur Achse – vereinfacht

Bemessungswert der Tragfähigkeit:

$$R_d = R_k \cdot \frac{k_{mod}}{\gamma_M}$$

k_{mod} = Modifikationsbeiwert

 γ_{M} = Teilsicherheitsbeiwert = 1,1

Festigkeiten

 Die Festigkeiten ergeben sich für Stabdübel, Passbolzen und Bolzen sowie Gewindestangen aus der zu verwendenden Stahlsorte

	Stahlsorte bzw. Festigkeitsklasse	Char. Festigkeit f _{u,k} [N/mm²]
Stabdübel	S 235 ¹⁾	360
	S 275 ¹⁾	430
	S 355 ¹⁾	510
Bolzen und Passbolzen	3.6 ²⁾	300
	4.6 bzw. 4.8 ²⁾	400
	5.6 bzw. 5.8 ²⁾	500
	8.8 ²⁾	800
Gewindestangen	4.8 ²⁾	400
	5.8 ²⁾	500
	8.8 ²⁾	800

Stahlsorte nach DIN EN 10025:1994-03

Festigkeitsklasse nach DIN EN ISO 898-1:1999-11

Einhängeeffekt

Erhöhung der charakteristischen Tragfähigkeit Rk

Bei Verbindungen mit Passbolzen darf R_k um einen Anteil ΔR_k erhöht werden.

 $\Delta R_k =$ min $\{0,25 R_k; 0,25 R_{ax,k}\}$

Animation: F. Colling / K. Riedel

Kraftangriff rechtwinklig oder schräg zur Faserrichtung

Charakteristische Werte der Lochleibungsfestigkeit für eine Belastung unter einem Winkel α :

$$f_{h,\alpha,k} = \frac{f_{h,0,k}}{k_{90} \cdot \sin^2 \alpha + \cos^2 \alpha}$$

= Char. Wert der Lochleibungsfestigkeit Holz $f_{h,0,k}$

= $0.082 \times (1 - 0.01 \times d) \times \rho_k$ (vorgebohrte Vb.-mittel)

 $= 1,35 + 0,015 \times d$ (Nadelholz) k_{90}

 $= 0.90 + 0.015 \times d$ (Laubholz)

= 1,0 bei Verbindungsmitteln d ≤ 8mm

Mindestholzdicke

Die Tragfähigkeit beim vereinfachten Nachweis gilt unter der Voraussetzung definierter Mindestholzdicken:

Mindestdicke f
ür das Seitenholz 1:

$$t_{1,req} \ge 1,15 \cdot \left(2 \cdot \sqrt{\frac{\beta}{1+\beta}} + 2\right) \cdot \sqrt{\frac{M_{y,k}}{f_{h,1,k} \cdot d}}$$

Bei gleichen Lochleibungsfestigkeiten ($\beta = 1$):

$$t_{1,req} \ge 3.93 \cdot \sqrt{\frac{M_{y,k}}{f_{h,1,k} \cdot d}}$$

Mindestholzdicke

Mindestdicke für das Seitenholz 2:

$$t_2 \ge t_{2,req} = 1.15 \cdot \left(2 \cdot \frac{1}{\sqrt{1+\beta}} + 2\right) \cdot \sqrt{\frac{M_{y,k}}{f_{h,2,k} \cdot d}}$$

Bei gleichen Lochleibungsfestigkeiten ($\beta = 1$):

$$t_{1,req} \ge 3.93 \cdot \sqrt{\frac{M_{y,k}}{f_{h,1,k} \cdot d}}$$

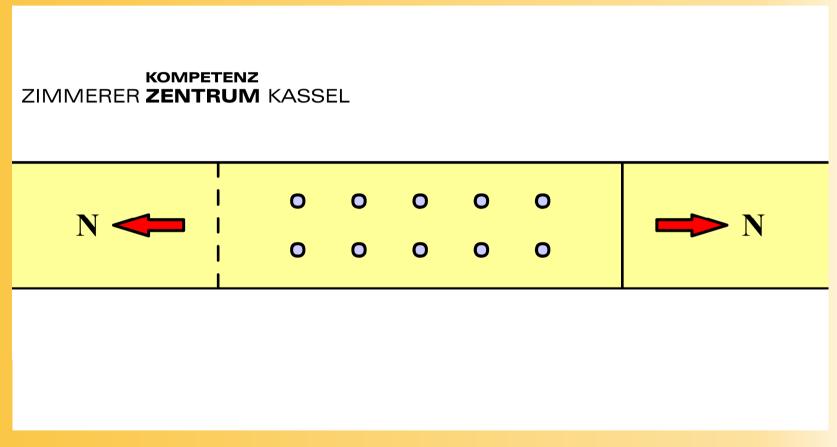
Mindestholzdicke

Mindestdicke für Mittelhölzer:

$$t_2 \ge t_{2,req} = 1.15 \cdot \left(\frac{4}{\sqrt{1+\beta}}\right) \cdot \sqrt{\frac{M_{y,k}}{f_{h,2,k} \cdot d}}$$

bei
$$\beta = 1$$
:
$$t_{1,req} \ge 3,25 \cdot \sqrt{\frac{M_{y,k}}{f_{h,1,k} \cdot d}}$$

Beträgt die Mindestholzdicke t weniger als t_{req}, muss die Tragfähigkeit im Verhältnis der vorhandenen Holzdicke zur geforderten Holzdicke abgemindert werden.



Reduktion der wirksamen Verbindungsmittelanzahl

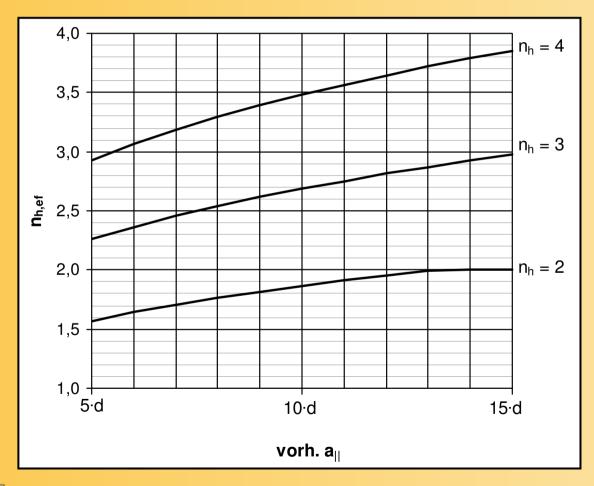
Stiftförmige Verbindungsmittel

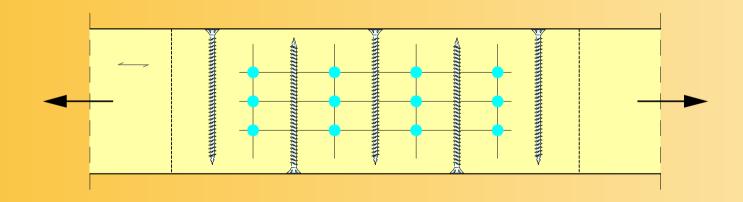
Allgemein:
$$n_{ef} = min \begin{cases} n \\ n^{0.9} \cdot 4 \sqrt{\frac{vorh. a_1}{10 \cdot d}} \times \frac{90 - \alpha}{90} + n \times \frac{\alpha}{90} \end{cases}$$

Bei
$$\alpha = 0$$
:
$$n_{ef} = min \begin{cases} n \\ n^{0.9} \cdot \sqrt[4]{\frac{vorh. a_1}{10 \cdot d}} \end{cases}$$

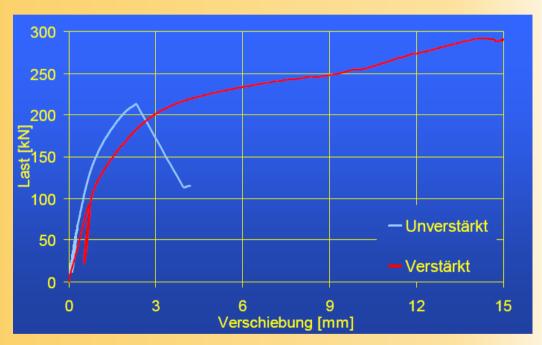
Reduktion abhängig vom Verbindungsmittelabstand!

Nägel ≤ 6mm: n_{ef} = n





Verstärkung rechtwinkelig zur Faserrichtung möglich



Verstärkung rechtwinkelig zur Faserrichtung möglich

Vorbohren

- Die Löcher sind im Holz mit dem Nenndurchmesser zu bohren
- Bei Stahlblech-Holz-Verbindungen dürfen die Löcher im Stahlteil bis zu 1 mm größer als der Nenndurchmesser sein
- Beim gleichzeitigen Bohren von Holz und Stahlteilen muss mit dem Nenndurchmesser der Stabdübel gebohrt werden

Vorbohren

- Bei Bolzen müssen die Löcher so gebohrt werden, dass auch bei mehrschnittigen Verbindungen ein Spiel von 1 mm nicht überschritten wird.
- Bei außenliegenden Stahlblechen müssen Passbolzen verwendet werden. Im Stahlteil muss der volle Schaftquerschnitt vorhanden sein.

Mindestanzahl

Tragende Verbindungen müssen mind. 4 Scherflächen aufweisen, dabei sollten zwei Verbindungsmittel vorhanden sein.

Ausnahme: char. Wert der Tragfähigkeit wird nur zu 50% ausgenutzt

Mindest-, Maximal-Durchmesser

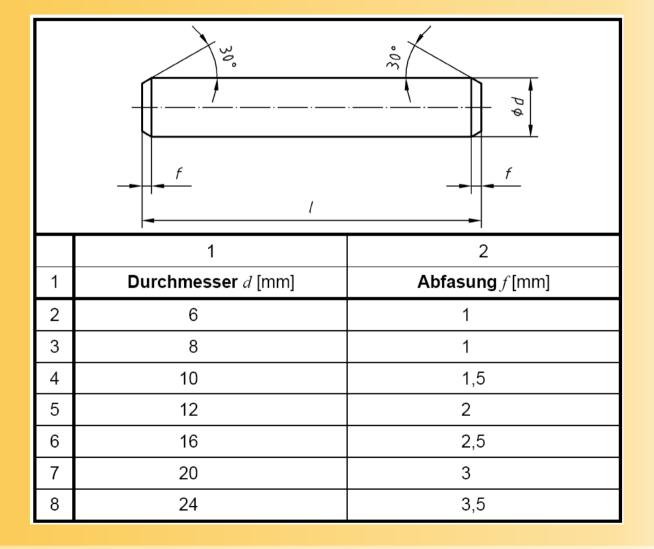
Mindestdurchmesser 6 mm, Maximaler Durchmesser 30mm

Mindestabstände

Mindestabstände von stiftförmigen Verbindungsmitteln					
		Stabdübel und Passbolzen	Bolzen und Gewindestangen		
a ₁	in Faserrichtung	(3+2×cosα)×d	(3+2×cosα)×d mind. 4×d		
a ₂	rechtwinklig zur Faserrichtung	3×d	4×d		
a _{1,t}	beanspruchtes Hirnholzende	7×d mind. 80 mm	7×d mind. 80 mm		
a _{1,c}	unbeanspruchtes Hirnholzende	7×d×sinα mind. 3×d	7×d×sinα mind. 4×d		
a _{2,t}	beanspruchter Rand	3×d	3×d		
a _{2,c}	unbeanspruchter Rand	3×d	3×d		

Vorzugsmaße von Scheiben für Bolzen und Passbolzen

	Innendurchmesser	Außendurchmesser	Scheibendicke
Schraubenbolzen	[mm]	[mm]	[mm]
M12	14	58	6
M16	18	68	6
M20	22	80	8
M22	25	92	8
M24	27	105	8



Vorzugsmaße für Stabdübel

